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Abstract
A number of domain specific languages, such as circuits
or data-science workflows, are best expressed as diagrams
of boxes connected by wires. Unfortunately, functional lan-
guages have traditionally been ill-equipped to embed this
sort of languages. TheArrow abstraction is an approximation,
but we argue that it does not capture the right properties.
A faithful abstraction is Symmetric Monoidal Categories

(smcs), but, so far, it hasn’t been convenient to use. We show
how the advent of linear typing in Haskell lets us bridge
this gap. We provide a library which lets us program in
smcs with linear functions instead of smc combinators. This
considerably lowers the syntactic overhead of the edsl to be
on par with that of monadic dsls. A remarkable feature of
our library is that, contrary to previously known methods
for categories, it does not use any metaprogramming.

CCS Concepts: • Software and its engineering → Do-
main specific languages; • Theory of computation→
Models of computation.
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1 Introduction
Parable. Frankie is designing a domain-specific language

(dsl), and by working out examples on paper, realises that
the best way to describe objects in that dsl is by box-and-
wires diagrams, similar to those in Fig. 1. The story does not
say what Frankie intends to use the dsl for. Maybe it has to
do with linear algebra, parallel computing, or even quantum
computations (see Section 4): this kind of pattern occurs in
many contexts. Following accepted functional programming
methodologies, Frankie searches for the right abstraction and
finds out that Symmetric Monoidal Categories (smc for short)
capture said diagrams precisely [19, Section 3]. Accordingly,
Frankie starts coding examples using the combinators of
smcs (Fig. 2b), but disappointment is great after writing a
few examples: everything is expressed in point-free style,
resulting in cryptic expressions such as (b × Z ) ◦𝛼 ◦ (id× (𝛼
◦ (𝜎 × id) ◦𝛼 ◦ (id×𝜔) ◦𝛼 ◦ (𝜎 × id))) ◦𝛼 ◦ (𝜙 × id) for the
boxes-and-wires diagram of Fig. 1c. It becomes obvious to
Frankie why programming languages have variables: in a
language with variables, the same example can be expressed
much more directly. Something like:

ex3 (a # z) = b (y # c) # Z (w # d)
where (y # x #w) =𝜙 a

(c # d) =𝜔 (x # z)

Now, Frankie could roll-out a special-purpose language for
smcs with variables, together with some compiler, and inte-
grate it into company praxis. But this would be quite costly!
For instance, Frankie would have to figure out how to share
objects between the dsl and the host programs. Deploying
one’s own compiler can be a tricky business.

But is it, really, Frankie’s only choice? Either drop lambda
notation and use point-free style, or use a special-purpose
compiler to translate from lambda notation to smcs? In this
paper, we demonstrate that no compromise is necessary:
Frankie can use usual functions to encode diagrams. Specif-
ically, we show how to evaluate linear functions to smc
expressions. We do so by pure evaluation within Haskell.
We require no external tool, no modification to the com-
piler nor metaprogramming of any kind. This makes our
solution particularly lightweight, and applicable to every
functional programming language that supports linear types.
Even though we specifically target Linear Haskell [3], our

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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ex1 (a # d) =𝜔 (b # e) # f
where (b # c) =𝜙 a

(e # f) =𝜓 (d # c)
𝜔

𝜓
𝜙

(a) (𝜔 × id) ◦𝛼 ◦ (id× (𝜓 ◦𝜎)) ◦𝛼 ◦ (𝜙 ×
id)

ex2 (a # b) =𝜙 (x # z) #
𝜓 (y #w)

where (z #w) = Z b
(x # y) = b a

𝜙

𝜓

b

Z

(b) (𝜙 ×𝜓 ) ◦𝛼 ◦ (id× (𝛼 ◦ (𝜎 × id) ◦𝛼)) ◦
𝛼 ◦ (b × Z )

ex3 (a # z) = b (y # c) # Z (w # d)
where (y # x #w) =𝜙 a

(c # d) =𝜔 (x # z)
b

Z𝜔

𝜙

(c) (b × Z ) ◦𝛼 ◦ (id× (𝛼 ◦ (𝜎 × id) ◦𝛼 ◦
(id×𝜔) ◦𝛼 ◦ (𝜎 × id))) ◦𝛼 ◦ (𝜙 × id)

Figure 1. A few smc morphisms, their encoding as functions, and their string diagram representations.

technique works in any other functional languages with
linear types, such as Idris2 [5] or Granule [13].

We make the following contributions:
• We give a linearly typed api to construct smc mor-
phisms (Section 3). This api is only 5 functions long
and allows the programmer to use the name-binding
features of Haskell to name intermediate results.
• We demonstrate with concrete applications how our
api lets one use Haskell’s functions and variables to
concisely define smc morphisms (Section 4).
• We describe an implementation of our api, and prove
its correctness (Section 5).
This implementation was tested on all the examples
shown in this paper. In particular, whenever we show
a function and a corresponding diagram, as in Fig. 1,
our library was used to automatically generate an smc
representation, which was in turn converted to a di-
agram, and imported to the LATEX source code of the
paper. In this sense, this paper is self-testing.
The library is available on the Hackage repository:
https://hackage.haskell.org/package/linear-smc.

The rest of the paper discusses salient points and related
work (Section 6), before concluding in Section 7. Before any
of this, we review the underlying concepts and introduce
our notations for them (Section 2).

2 Notations and Conventions
In this section we recall the notions of category theory nec-
essary to follow our development and examples. In addition
we explain our notation for morphisms and conventions for
diagrams.

2.1 Categories
The fundamental structure is that of a category (Fig. 2a).
In general a category k is composed of objects and mor-
phisms, but here we take objects to be types satisfying a
specific constraint Obj. This choice is convenient because it
lets us make the type of Haskell functions an instance of the
Category class. A morphism from a to b is a value of type

k a b, which we suggestively note a
k
{b. Categories are addi-

tionally equipped with an identity at every type (id), which
is represented in diagrams as a line. Additionally, categories
have morphism composition (◦), represented by connecting
morphisms with a line (Fig. 3). This representation neatly
captures the laws of categories: morphisms are equivalent iff
they are represented by topologically equivalent diagrams.
(For instance, composing with the identity simply makes a
line longer, and stretching a line is a topology-preserving
transformation.) In this paper we follow the usual conven-
tion for the directions, even though it means that the layout
of diagrams is inverse to that of Haskell expressions. That
is, one can think of information as flowing from right-to-
left in the expression f ◦ g, but left-to-right in the diagram
representing it.
Even though many applications depend crucially on Obj

constraints, they are often lengthy, and orthogonal to our
main points. Thus, to minimise clutter, most of the time we
omit these Obj constraints. To recover them, one should
add an Obj constraint for every relevant type variable, as
well as for the unit type. Additionally, for smcs (introduced
in Section 2.2 below), one needs closure under monoidal
product.

2.2 Symmetric Monoidal Categories
Our main objects of study are Symmetric Monoidal Cat-
egories (abbreviated as smc throughout the paper). They
feature a unit object and the monoidal product (often also
called tensor product), written a ⊗ b. In general the unit can
be any type, and the product can be any type family, but it
is sufficient for our applications to let the unit object be the
unit type (written ()) and the monoidal product as the prod-
uct type of Haskell (a, b). Smcs provide a number of ways to
manipulate the product of objects. First, arbitrary morphisms
f : a

k
{b and g : c

k
{d can be combined using the (×) combi-

nator: f × g : (a ⊗ c) k
{(b ⊗ d). This combinator is most often

also called a product. In this paper we use different symbols
for the product action on morphisms f × g and on types a ⊗ b,
hopefully minimising confusion. In diagrams, the product of

https://hackage.haskell.org/package/linear-smc
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classCategory kwhere
typeObj k :: Type→Constraint

id ::Obj k a⇒ a
k
{ a

(◦) :: (Obj k a,Obj k b,Obj k c) ⇒
(b k
{ c) → (a k

{ b) → a
k
{ c

(a) Category structure

class (Category k) ⇒Monoidal kwhere

(×) :: (a k
{ b) → (c k

{ d) → (a ⊗ c) k
{ (b ⊗ d)

𝜎 :: (a ⊗ b) k
{ (b ⊗ a)

𝛼 :: ((a ⊗ b) ⊗ c) k
{ (a ⊗ (b ⊗ c))

𝛼 :: (a ⊗ (b ⊗ c)) k
{ ((a ⊗ b) ⊗ c)

𝜌 :: a
k
{ (a ⊗ ())

𝜌 :: (a ⊗ ()) k
{ a

(b) Symmetric Monoidal Category structure

Figure 2. Categorical structures.

𝑓𝑔

𝑓

𝑔

𝑓

𝑔

id f ◦ g f × g 𝛼 𝛼 𝜎 𝜌 𝜌 Y 𝜋1 𝜋2 𝛿 f △ g

Figure 3. Diagram-Morphism correspondence.

morphisms is represented by laying out the diagram repre-
sentations of the operands on top of each other. This means
that the product morphism has two lines as output and in-
put. In general we allow drawing parallel lines in place of a
single line if the corresponding object is a monoidal product.
Consequently, the rest of the combinators —associators (𝛼
and 𝛼), unitors (𝜌 and 𝜌) and swap (𝜎)— can be drawn as a
(small) descriptive network of lines rather than as abstract
boxes. For instance, more tightly associated products are
represented by closer parallel lines, and the associators (𝛼
and 𝛼) regroup lines accordingly. The purpose of unitors is
to introduce or eliminate the unit object, whose carrying
lines are drawn dotted. Finally the 𝜎 morphism exchanges
objects in a product. The reader can refer to Fig. 2b for a sum-
mary, and the corresponding diagram representations are
shown in Fig. 3. As in the case of simple categories, a great
advantage of this diagrammatic notation is that diagrams
which can be transformed into one another by continuous
deformation (including the removal of disconnected dotted
lines) represent equivalent morphisms. This property makes
the laws of smcs intuitive, and because they are extensively
documented elsewhere [1], we won’t repeat them here. We
clarify however that lines can pass each other freely: knots
are not taken into account when checking topological equiv-
alence. (For example, two consecutive 𝜎 cancel: 𝜎 ◦𝜎 = id.)
This property corresponds to the “symmetric” qualifier in
“Symmetric Monoidal Categories”, and it is important to us
because it means that one need not worry about the order
of binding or use of variables when using lambda notation
to describe morphisms.

classMonoidal k⇒Cartesian kwhere

𝜋1 :: (a ⊗ b) k
{ a

𝜋2 :: (a ⊗ b) k
{ b

Y :: a
k
{ ()

𝛿 :: a
k
{ (a ⊗ a)

(△) :: (a k
{ b) → (a k

{ c) → a
k
{ (b ⊗ c)

Figure 4. Cartesian structure

2.3 Cartesian Categories
Another key concept is that of cartesian categories (Fig. 4).
Even though they are often presented as standalone struc-
tures, we instead present them as a layer on top of smcs.
More precisely, we add only new morphisms: no new way
to combine morphisms is necessary. (In the boxes-and-wires
metaphor, we add only new boxes, and no layout rule is
added.) A minimal set of such new morphisms is comprised
of Y and 𝛿 , which respectively discard and duplicate an input.
However, it is useful to consider alternative presentations,
which can be more convenient, depending on the purpose.
Instead of Y, one can use projections (𝜋1 and 𝜋2), with 𝜋1 = 𝜌

◦ (id× Y) and likewise for 𝜋2. Likewise, but independently,
one may use the combinator (△) instead of 𝛿 , with f △ g= (f
× g) ◦𝛿 . Our diagram notation makes the latter two variants
indistinguishable, while the former two are equivalent under
pruning of dotted lines: = .
It is enlightening to consider what becomes of the corre-

spondence between diagram (topological) equivalence and
morphism (algebraic) equivalence in the presence of the
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above laws. For Y, the metaphor can be sustained: continu-
ous deformation of lines involving capture its laws. For 𝛿 ,
the topological metaphor begins to break down. Morphisms
can commute with 𝛿 in the following way: (f × f) ◦𝛿 =𝛿
◦ f. This breakdown has consequences for computational
applications, as we discuss in Section 6.2.

2.4 Linear Types
We rely on linear types in Haskell in an essential way. Indeed,
every linear function can be interpreted in terms of an smc.
This is a well known fact, proven for example by Szabo [21,
Ch. 3] or Benton [2]. Unfortunately it does not mean that
we have nothing to do. Indeed, the above result, as it stands,
only means that one can obtain an smc representation from
another representation as a (well-typed) lambda term. Such a
term is, indeed, constructed by a compiler, but it is in general
not made available to the programs themselves: some form of
metaprogrammingwould be required. Unfortunately, outside
the Lisp family, such metaprogramming facilities are often
brittle or non-existent. For instance, the Template Haskell
api is a direct reflection of the internal representation of
source code in use by the Glasgow Haskell Compiler, and
consequently the user-facing api changes whenever this
internal representation changes.

In this paper we use Linear Haskell as host language, and
borrow its semantics and notations. We refer to Bernardy
et al. [3] if any doubt should remain, but what the reader
should know is that linear functions are denoted with a lol-
lipop (⊸), and the pointy-headed arrow (→) corresponds to
usual functions, which can use their argument any number
of times. A notable feature of Linear Haskell is that unre-
stricted inputs can be embedded in data types (which can
themselves be handled linearly). We make use of this feature
in our implementation (Section 5). In sum, any language
with the above feature set is sufficient to host our interface
and implementation. In particular, we do not make use of
the ability of Linear Haskell to quantify over the multiplicity
(linear or unrestricted) of function types.

3 Interface
With all the basic components in place, we can now reveal
the interface that we provide to construct the morphisms
of a symmetric monoidal category k using lambda notation.
We introduce a single abstract type: P k r a, where r is a type
variable (unique for the morphism under construction) and
a is an object of the category k. Values of the type P k r a
are called ports carrying a. In the boxes-and-wires metaphor,
ports are the output wires of boxes. Indeed, the type of mor-
phisms a

k
{b is encoded as functions of type P k r a⊸ P k r b.

However, the type P k r a is abstract: it is manipulated solely
via the combinators of Fig. 5. (This is enforced according to
standard Haskell praxis: the definitions are hidden behind a
module boundary, which exports only the prescribed api.)

typeP :: (Type→ Type→ Type) → Type→ Type→ Type
unit ::P k r ()
split ::P k r (a ⊗ b)⊸ (P k r a, P k r b)
merge :: (P k r a, P k r b)⊸ P k r (a ⊗ b)
encode :: (a k

{ b) → (P k r a⊸ P k r b)
decode :: (∀ r . P k r a⊸ P k r b) → (a k

{ b)

Figure 5. The port api

Our bread and butter are the split andmerge combinators,
which provide the ability to treat ports of type P k r (a ⊗ b)
as a pair of ports. In fact, split and merge are ubiquitous
enough to deserve a shorthand notation, suggestive of the
pair-like character of P k r (a ⊗ b):
• We write (a # b) for merge (a, b)
• We also use (a # b) as a pattern, and interpret it as a
call to split. For instance, let (a # b) = f in u means let
(a, b) = split f in u

Likewise, the presence of unit means that ports of type P k r
() can be created from thin air, which is useful to embed
constants. Finally and crucially, encode and decode provide
means to convert back and forth between morphisms of an
smc (a

k
{b) and (P k r a⊸ P k r b), the corresponding linear

functions.We see in the type of decode how the type variable
r is introduced, ensuring that ports coming from different
functions are not mixed. This interface is guaranteed to sat-
isfy the following properties:

Definition 3.1. Laws of the interface
• split and merge are inverses: split (merge p) = p and
merge (split p) = p
• encode and decode are inverses: encode (decode f) = f
and decode (encode p) = p
• encode is a functor: encode id= id and encode (𝜙 ◦𝜓 )

= encode𝜙 ◦ encode𝜓
• encode is compatible with products: encode (𝜙 ×𝜓 )
(a # b) = (encode𝜙 a # encode𝜓 b)
• unit corresponds to unitors: encode 𝜌 a= (a # unit) and
encode 𝜌 (a # unit) = a
• 𝜎 , 𝛼 and 𝛼 are consistent between Haskell and the
embedded category:
– encode𝜎 (a # b) = (b # a)
– encode𝛼 ((a # b) # c) = (a # (b # c))
– encode𝛼 (a # (b # c)) = ((a # b) # c)

Stating the laws which involve products does require a bit
of care. For instance, it would not have been type-correct to
write encode (f × g) = encode f × encode g nor encode𝜎 =𝜎 :
going through split and merge is necessary.
Another aspect to consider is that many of these laws

refer to an equality on ports. Because the type of ports is
abstract, we cannot define it yet: its concrete definition will
be provided together with the concrete definition of ports.
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However, we can already give an intuition for it in terms of
diagrams: two ports are equal if they are one and the same in
the diagram. Even it is abstract, we can already reason with
this equality via the following property: two extensionally
equal functions on ports will decode to the same morphism.
Formally: (∀ x . f x= g x) → decode f = decode g.
Without introducing any additional concept, we can al-

ready observe some benefits of the above interface. First,
one can use all the facilities of a higher-order language to
construct elements of a

k
{b, even though k does not have an

internal notion of functions (it need not be a closed category).
We owe this benefit to the host language evaluation, which
takes care of evaluating all intermediate redexes. It can be
illustrated by the existence of currying combinators:

curry :: (Monoidal k) ⇒ (P k r (a ⊗ b)⊸ P k r c)
⊸ (P k r a⊸ P k r b⊸ P k r c)

curry f a b= f (a # b)
uncurry :: (Monoidal k) ⇒ (P k r a⊸ P k r b⊸ P k r c)

⊸ (P k r (a ⊗ b)⊸ P k r c)
uncurry f p= case split p of (a, b) → f a b

Second, if the category k happens to be cartesian, then we
can freely copy and discard ports. This is done by encoding
Y and 𝛿 , as follows:

copy :: (Cartesian k) ⇒P k r a⊸ P k r (a ⊗ a)
copy= encode𝛿
discard :: (Cartesian k) ⇒P k r a⊸ P k r ()
discard= encode Y

It is worth stressing that copy and discard are not part of
the abstract interface. Indeed, in the above the morphisms 𝛿
and Y are treated as black boxes by our implementation, just
like any other morphism of k would be. Consequently the
implementation does not assume that any law holds for them,
and in particular it cannot commute anymorphismwith (this
instance of) 𝛿 using the law f × f ◦𝛿 =𝛿 ◦ f. We come back
to this aspect in Section 6.2. More generally, thanks to the
encode combinator, every morphism of k can be turned into
a Haskell function on ports.

4 Applications
In this section, we put the port api of Fig. 5 to use. Through
two examples of diagrammatic languages, we illustrate how
convenient it is to describe box-and-wire diagrams as func-
tions on ports.

4.1 Quantum Circuits
In quantum computing one of the commonways to represent
programs is as quantum circuits. Take, for instance, the circuit
of Fig. 6, which is an implementation of the Toffoli gate in
terms of simpler quantum gates.
For our purposes, it suffices to treat the atomic gates in

Fig. 6 as abstract. Regardless, if a reader may be interested
in looking up their definitions, the gate 𝐻 stands for the

Hadamard gate,𝑇 for the T gate, and ⊕ for the controlled-not
gate.1 Quantum circuits closely resemble traditional Boolean
circuits except that a circuit represents not a Boolean func-
tion, but a unitary matrix on some finite dimensional C-
vector space. For our purposes, unitary matrices have two
important properties. First, they form an smc, which we call
U. (This is why quantum circuits can be written as boxes-
and-wires diagrams.)

A possible implementation of the U category is to let a
U
{b

be a matrix whose indices range a and b.
dataUa b=U {fromM ::Array (a, b) C}

Thus this means in particular that all objects in this category
must be finite types: Finite a= (Bounded a, Ix a, Eq a). This
way we can construct matrices using the following function:

tabulate :: (Finite a, Finite b) ⇒ (a→ b→C) → a
U
{ b

tabulate f =U (array ((minBound,minBound),
(maxBound,maxBound))

[((i, j), f i j) | i← inhabitants, j← inhabitants])
Besides, the main tool for implementation is the Kronecker
delta:

delta :: (Eq a) ⇒ a→ a→C
delta x y= if x≡ y then 1 else 0

We can then construct the Monoidal U instance:
instanceCategoryUwhere
typeObjU= Finite
id= tabulate delta
U g ◦U f = tabulate (_ i j→ summation

(_ k→ f ! (i, k) ∗ g ! (k, j)))
instanceMonoidal Uwhere
U f ×Ug= tabulate (_ (a, c) (b, d) → f ! (a, b) ∗ g ! (c, d))
𝜌 = tabulate (_ x (y, ()) → delta x y)
𝜌 = tabulate (_ (y, ()) x→ delta x y)
𝛼 = tabulate (_ ((x, y), z) (x′, (y′, z′)) →

delta ((x, y), z) ((x′, y′), z′))
𝛼 = tabulate (_ (x′, (y′, z′)) ((x, y), z) →

delta ((x, y), z) ((x′, y′), z′))
𝜎 = tabulate $ _ (x, y) (y′, x′) → delta (x, y) (x′, y′)

Morphism composition is matrix product, and the product (
×) is implemented as the Kronecker product.
To be complete, we also would need to show that each

method implemented above preserves the unitary character
of matrices. These proofs can be easily looked up, but for
the reader who might prefer to reconstruct them, the key
property is that a matrix is unitary iff its determinant is 1:
norm (det u) = 1. Then one needs to check that this property
is preserved by each operation. The properties to invoke are
det (u ◦ v) = det u · det v and det (u× v) = (det u) ˆ n · (det v)
ˆm, where n and m are the respective dimensions of u and
v.

1Refer for example to https://en.wikipedia.org/wiki/Quantum_logic_gate
and https://en.wikipedia.org/wiki/Toffoli_gate.

https://en.wikipedia.org/wiki/Quantum_logic_gate
https://en.wikipedia.org/wiki/Toffoli_gate
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⊕
𝑇

𝑇 †
⊕

𝑇

𝐻𝑇
⊕

𝑇 †
⊕

𝑇
⊕

𝑇 †⊕
𝐻

Figure 6. Toffoli gate in terms of 𝐻 , 𝑇 and ⊕.

Second, unitary matrices can be inverted by taking their
conjugate transpose. Notice for example the use of the gate
𝑇 † in Fig. 6. It is the conjugate transpose of 𝑇 . That is, 𝑇 † is
not a primitive gate, but one defined in terms of 𝑇 using the
function

conjugateTranspose ::Ub a→Ua b

It would be inconvenient to have to return to the low-level
smc interface every time we want to invert a matrix: what
we really want is to lift the U-level interface to ports (PU)
once and for all, then work entirely with ports. Fortunately,
we can do just that. The only difference with lifting simple
morphisms (a

U
{b) is that lifting conjugateTranspose yields

a higher-order function:

invert :: (∀ s . PU s a⊸ PU s b) → (∀ r . PU r b⊸ PU r a)
invert f = encode (conjugateTranspose (decode f))

Consequently we do not have to encode the diagram of Fig. 6
using the methods of theMonoidal class, but we can use the
more familiar lambda notation, manipulating ports. We do so
assuming the gates 𝐻 ,𝑇 , and ⊕, which we can leave abstract
with the following types:

𝐻 ::PU r Bool⊸ PU r Bool
𝑇 ::PU r Bool⊸ PU r Bool
(⊕) ::PU r Bool⊸ PU r Bool⊸ (PU r Bool, PU r Bool)

Now, we can define the Toffoli gate circuit as follows

toffoli :: PU r ((Bool ⊗ Bool) ⊗ Bool)
⊸ PU r ((Bool ⊗ Bool) ⊗ Bool)

toffoli c1 c2 x= c1 ⊕𝐻 x & _ (c1, x) →
c2 ⊕𝑇 † x & _ (c2, x) →
c1 ⊕𝑇 x & _ (c1, x) →
c2 ⊕𝑇 † x & _ (c2, x) →
c2 ⊕𝑇 c1 & _ (c2, y) →
(𝑇 c2 ⊕𝑇 † y) # (𝐻 (𝑇 x))
where𝑇 † = invert𝑇

We use explicit 𝛽-redexes instead of let-bindings here be-
cause we want to reuse some variable names: since using
a linear variable makes it unavailable in the remainder of
the function, we may freely reuse its name. Unfortunately,
Haskell only has recursive lets, so if we were to write let
(c1 # x) = c1 ⊕𝐻 x in . . . , Haskell would try to define both c1
and x recursively, which is not the intended behaviour. To
this effect, we use the reverse-order linear application oper-
ator (&) which is defined as

b

Z

𝜙

𝜓

Figure 7. A workflow corresponding to the morphism (b ×
Z ) ◦𝛼 ◦ (𝜙 ×𝜓 ).

(&) :: a⊸ (a⊸ b)⊸ b
x& f = f x

This is a specificity of Haskell. In a language with non-
recursive lets the definition of toffoli would look even more
natural.

4.2 Workflow Orchestration
Consider a type Step a b representing computations from
type a to type b: a value of type Step a bmay be some Haskell
function, or it can run an external command. Whatever it is,
we make the assumption that the side effects embedded in a
Step are commutative. That is, it never matters if step 𝜙 is
run before step 𝜓 or the other way around. And, in fact, if
there is no data dependencies between 𝜙 ant𝜓 , we want to
run them in parallel.
What we want to do, in this scenario, is to compose indi-

vidual steps together to form bigger computations, typically
called a workflow. In Fig. 7 we show a simple, albeit typical,
workflow.

What would a dsl to that effect look like? A first attempt
may be to organise the dsl around a monadM, and define
the workflow of Fig. 7 as follows:

typeWorkflow a b= a→Mb
workflowM ::Workflow (A,B) (C,D)
workflowM (a, b) = do
(x, y) ←𝜙 a
z←𝜓 b
c← b x
d← Z (y, z)
return (c, d)

The problem with this monadic dsl, however, is that it forces
us to fully sequentialise ourworkflow:𝜙 runs before𝜓 , which
runs before b , which runs before Z . This is wasteful: a glance
at Fig. 7 makes it obvious that 𝜙 and𝜓 can be run in parallel,
as well as b and Z , etc. Running independent steps in parallel
may be crucial to performance. But the monad abstraction
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makes the inherent parallelism fundamentally unrecover-
able.

To improve upon this state of affairs, one could attempt to
leverage an applicative functor structure thatMmay exhibit.
Accordingly one can recover parallelism as follows:

workflowA ::Workflow (A,B) (C,D)
workflowA (a, b) = do
((x, y), z) ← (,) <$>𝜙 a<∗>𝜓 b
(c, d) ← (,) <$> b x<∗> Z (y, z)
return (c, d)

This is the style advocated, in the context of database query
batching, by the Haxl library [11]. Ghc even features an
extension (ApplicativeDo [12]) that automatically translates
code written using the do-notation (as inworkflowM) to use
applicative combinators for parallel commands asworkflowA
does. Unfortunately, evenworkflowA doesn’t fully expose all
the parallelism opportunities:workflowAwill run both𝜙 and
𝜓 in parallel, but it will wait until both are completed before
starting either b or Z . But only the result of 𝜙 is necessary
to run b . If 𝜓 takes more time to run than 𝜙 , then this is
wasteful.

One could try to rewrite the workflow as follows:
workflowA′ ::Workflow (A,B) (C,D)
workflowA′ (a, b) = do
((y, c), z) ← (,) <$> part1 <∗>𝜓 b
d← Z (y, z)
return (c, d)
where part1 = do (x, y) ←𝜙 a

c← b x
return (y, c)

Now b can start as soon as 𝜙 completes, and run in parallel
with 𝜓 . But Z has to wait for b to complete before it can
start. In sum, the combined Applicative-Monadic interface
prevents any implementation to fully expose the parallelism
opportunities inherent in the workflow.
Haskell offers another abstraction, called arrows [9], to

model parallelism. This is how Parès et al. [14] model work-
flows. In this style, our example would look like:

dataWorkflow a b
instanceArrowWorkflow
workflowArr ::Workflow (A,B) (C,D)
workflowArr= (𝜙 ∗∗∗𝜓 ) >>>

arr (_ ((x, y), z) → (x, (y, z))) >>>
(b ∗∗∗ Z )

Or, using the built-in notation for arrows [15]
workflowArr′ ::Workflow (A,B) (C,D)
workflowArr′ = proc (a, b) → do
(x, y) ←𝜙 ⤙ a
z←𝜓 ⤙ b
c← b ⤙ x
d← Z ⤙ (y, z)
returnA⤙ (c, d)

In workflowArr, like workflowA, b must run after 𝜓 . It is
also possible to write a version of the workflow which, like
workflowA′, has b running in parallel with𝜓 , but Z must run
after b . In sum, This arrow-based dsl suffers from the same
problem as the applicative dsl: some over-sequentialisation
is unavoidable.2 Indeed, a situation just as this one, in an
industrial workflow, was one of the motivations behind this
paper. It was impossible to optimise resources usage in that
workflow due to the limitation of the arrow abstraction,
wasting resources.

In contrast, if workflows are given an smc instance, all the
parallelism of Fig. 7 is exposed and can be exploited by the
workflow scheduler.

dataWorkflow a b
instanceMonoidalWorkflow
workflowSMC ::PWorkflow r (KA)⊸ PWorkflow r (KB)

⊸ PWorkflow (KC ⊗ KD)
workflowSMCa b=𝜙 a & _ (x # y) →

𝜓 b & _ z→
b x & _ c→
Z y z& _ d→
(c # d)

This version is syntactically close to themonadicworkflowM
implementation: the chief difference is the use of reverse
application (&) instead of the monadic bind. Yet, all the par-
allelism is retained!

A noteworthy element of this workflow dsl is the presence
of Kwrappers around the types A, B, C, and D. The rationale
is that synchronisation points will be at the level of atomic
types, and K indicates such atomic types. That is, if two
sub-workflows are connected by the type K (a ⊗ b), then
there can be no parallelisation between them. However, if
they are connected by Ka ⊗ Kb, then parallelisation can
be discovered by the scheduler. (Another option to identify
atomic types would have to let ⊗ be different from the native
Haskell product.)
Composable workflows are implemented as IO actions con-
necting two synchronisation Points. This means in particular
that they embed synchronisation primitives (which reside in
IO () in Concurrent Haskell):

dataWorkflow a b
=W {taskRun ::Point a→Point b→ IO ()}

These Points must be at the level of base types (not products
thereof) so that synchronisation is as fine-grained as nec-
essary. Hence, the Point type must be defined by structural
induction over types, such that the synchronisation point

2This problem with Arrow can be attributed to the arr combinator. Because
arr embeds a Haskell function, it is opaque and thus prevents any efficient
scheduling strategy between the morphisms connected to it. Of course, for
some specific Arrow instances, one can provide the combinators of an smc
and recover a better behaviour when using them instead of arr. However this
does not apply when using the arrow notation, because it always desugars
to calls to arr.
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of a product is the product of synchronisation points. For
atomic types, synchronisation can be implemented by any
suitable mechanism provided by Haskell. Here we have cho-
sen theMVars of concurrent Haskell [17]. Such an induction
can be implemented in Haskell by exploiting the Obj con-
straint over types. We let it be a type-class HasPoint, with
separate instances for products and for base types. The form
of base type is required to be Ka with dataKa=Ka. If the
type Point a is an associated data type of the class HasPoint,
we get an inductive definition as desired:

classHasPoint awhere
dataPoint a :: Type
mkPoint :: IO (Point a)
connect ::Point a→Point a→ IO ()

instance (HasPoint a,HasPoint b) ⇒HasPoint (a ⊗ b)where
dataPoint (a ⊗ b) = (Point a) :∗ (Point b)
mkPoint= do
a←mkPoint
b←mkPoint
return (a :∗ b)

connect (a :∗ b) (a′ :∗ b′) = do
connect a a′

connect b b′

instanceHasPoint (K a)where
dataPoint (K a) =Atom (MVar a)
mkPoint=Atom<$> newEmptyMVar
connect (Atoma) (Atomb)

= forkIO (takeMVar a>>= putMVar b) >> return ()
The product (f × g) is implemented by running f and g in
separate threads (forking one extra thread). As described
above, the composition (f ◦ g) runs f and g in parallel, with
a new synchronisation point in-between. This means that if
f and g are run as subtasks with fine-grained dependencies:
no unnecessary synchronisation happens. The 𝜎 morphism
is implemented by forwarding data as appropriate. The other
ones (𝛼 , 𝜌) follow the same pattern and are omitted for
concision.

instanceCategoryWorkflowwhere
typeObjWorkflow=HasPoint
id=Wconnect
W f ◦Wg=W $ _ a c→ do

b←mkPoint
forkIO (g a b) >> f b c

instanceMonoidalWorkflowwhere
Wf ×Wg=W $ _ (a :∗ b) (c :∗ d) → do
_← forkIO (f a c)
g b d

𝜎 =W $ _ ((a :∗ b)) ((c :∗ d)) → do
connect a d
connect b c

𝛼 =W $ _ ((a :∗ ((b :∗ c)))) ((((d :∗ e)) :∗ f)) → do
connect a d
connect b e
connect c f

𝛼 =W $ _ (((a :∗ b) :∗ c)) ((d :∗ (e :∗ f))) → do
connect a d
connect b e
connect c f

𝜌 =W $ _ a ((a′ :∗ _)) → connect a a′

𝜌 =W $ _ ((a :∗ _)) a′→ connect a a′

The above implementation is only a prototype for illustrative
purposes. For instance, it causes a synchronisation point to
happen even between every two connected atomic tasks.
This excessive synchronisation can induce significant over-
heads in some situations. If this is a concern, one can perform
an analysis of the computation graph (say, by first reifying
it as a data type) and eliminate unneeded synchronisation
points. Additionally, applications may need somemechanism
to deal with errors or dead tasks.
A more fundamental limitation of the prototype resides

in synchronisation being of the simplest kind: connection
between ports is realised by simply forwarding data— al-
ways in the same direction. Thus, another extension to the
above prototype would be to support more complex proto-
cols (corresponding to other base types than K a). For exam-
ple, sequential data can be streamed, one element at a time.
Query-reply protocols are also a possibility. In this light, we
can now examine the question of whether tasks form a carte-
sian category (in addition to symmetric monoidal). Because
the 𝛿 morphism corresponds to multiplexing,Workflows can
be enthused with a cartesian structure only if all base pro-
tocols are multiplexable in their input. (The condition that
the unit type is the unit for multiplexing would normally be
satisfied as well.)

5 Implementation
In this section we reveal the implementation of our abstract
type for the api from Section 3. Unfortunately it is not just a
matter of writing down the specification and calculating an
implementation: some amount of creativity is required. The
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data FreeCartesian k a bwhere
I :: FreeCartesian k a a
(:◦:) :: FreeCartesian k b c→ FreeCartesian k a b

→ FreeCartesian k a c
Embed :: k a b→ FreeCartesian k a b
(:△:) :: FreeCartesian k a b→ FreeCartesian k a c

→ FreeCartesian k a (b ⊗ c)
P1 :: FreeCartesian k (a ⊗ b) a
P2 :: FreeCartesian k (a ⊗ b) b

instance (Monoidal k) ⇒Monoidal (FreeCartesian k)
instance (Monoidal k) ⇒Cartesian (FreeCartesian k)

Figure 8. Definition of the free cartesian category over an
underlying category k, whose morphisms it Embeds. P1 and
P2 implement respectively 𝜋1 and 𝜋2, while (:△:) implements
(△).

key idea is to represent ports as morphisms from the source (r)
to the object of interest. In terms of diagrams, they represent
the portion of the diagram which connect the source (on the
left) to the port.
Such morphisms may therefore discard part of the in-

put. This means that they are not morphisms of the smc k,
but rather morphisms of the free cartesian category over k
(FreeCartesian k r a, see Fig. 8):

dataP k r awhere
P :: FreeCartesian k r a→P k r a

fromP ::P k r a→ FreeCartesian k r a
fromP (P f) = f

This free category is implemented as a data type with a
constructor for each method in the Cartesian class, plus
a constructor to Embed generators from k. A subtlety is
that, even though P k r a is used linearly everywhere in the
interface, the free cartesian representation that it embeds can
be duplicated at will. In Linear Haskell this is subtly noted
by using using the→ arrow instead of⊸ in the declaration
of P constructor. Consequently, when doing encode 𝜙 , the
morphism 𝜙 must be available unrestricted, not just linearly.
This is not a problem in practice: even if data cannot be
duplicated, closed functions which manipulate such data can
be.
With these technical bits out of the way, let us return to

the main representational idea: a port for the object a is a free
cartesian morphism from r to a. Accordingly, the equality on
ports is the usual equality of free cartesian categories, but
quotiented by equations arising from Embed being an smc
homomorphism:

Embed id = id
Embed (𝜙 ◦𝜓 ) = Embed𝜙 ◦ Embed𝜓
Embed (𝜙 ×𝜓 ) = Embed𝜙 × Embed𝜓

etc.

Because P k r a is a morphism from r to a, the encoding
from a

k
{b to P k r a⊸ P k r b can be thought of as a transfor-

mation to continuation-passing-style (cps), albeit reversed—
perhaps a “prefix-passing-style” transformation. For non-
linear functions, the encoding would be given by the Yoneda
lemma [4] composed with embedding in the free cartesian
category. The implementation of the combinators of the
interface can then follow the usual (cartesian) categorical
semantics of product and unit types:

encode𝜙 (P f) =P (Embed𝜙 ◦ f)
unit =P Y
split (P f) = (P (𝜋1 ◦ f), P (𝜋2 ◦ f))
merge (P f, P g) =P (f △ g)

The most challenging part of the implementation is decode,
which converts linear functions between ports to morphisms
in k.
decode f = evalM (reduce (extract f))
extract :: (∀ r . P k r a⊸ P k r b) → FreeCartesian k a b
extract f = fromP (f (P id))

As usual in cps, the first step is to complete the computa-
tion by passing the identity morphism (extract). Then the
obtained FreeCartesian k morphism is projected to the smc
k, which it carries. The next step is reduce, which projects
the free cartesian representation to a free smc representa-
tion, referred hereafter as FreeSMC. This is the most difficult
operation, and we return to it shortly. The evalM part maps
a morphism of FreeSMCk back to a morphism in k —it is
the natural inductive definition on the structure of free-smc
morphisms.

data FreeSMCk a bwhere
I :: FreeSMCk a a
Embed :: k a b→ FreeSMCk a b
A :: FreeSMCk ((a ⊗ b) ⊗ c) (a ⊗ (b ⊗ c))
A′ :: FreeSMCk (a ⊗ (b ⊗ c)) ((a ⊗ b) ⊗ c)
S :: FreeSMCk (a ⊗ b) (b ⊗ a)
U :: FreeSMCk a (a ⊗ ())
U′ :: FreeSMCk (a ⊗ ()) a
(:◦:) :: FreeSMCk b c→ FreeSMCk a b

→ FreeSMCk a c
(:×:) :: FreeSMCk a b→ FreeSMCk c d

→ FreeSMCk (a ⊗ c) (b ⊗ d)
The equality for FreeSMC is quotiented by the same laws

regarding Embed as the FreeCartesian representation.
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evalM :: (Monoidal k) ⇒ FreeSMCk a b→ a
k
{ b

evalM I = id
evalM (f :×: g) = evalM f × evalMg
evalM (f :◦: g) = evalM f ◦ evalMg
evalMA =𝛼

evalMA′ =𝛼

evalMS =𝜎

evalMU = 𝜌

evalMU′ = 𝜌

evalM (Embed𝜙) =𝜙

5.1 Proving the Implementation Correct
Even though we have not fully described the implementation
yet, we know enough to prove it correct. (Indeed, the only
remaining uncertainty is in the implementation of reduce,
but we already have specified that it must not change the
meaning of morphisms, only project them from free cartesian
to free smc representations.)
To begin, we show that decode respects the equality on

ports. Indeed, due to this equality being quotiented by Embed
being an smc-homomorphism, a bit of reasoning is necessary
to prove that functions over ports which are extensionally
equal (with the above equality for outputs) are decoded to
equal morphisms:

Lemma 5.1. (∀ x . f x= g x) → decode f = decode g

Proof. The idea is that decode subjects all FreeCartesianmor-
phisms to evalM. Because evalM maps representations that
are equal under the Embed homomorphism equations to
equal morphisms in k, we have our result.
Formally, the implication is proven by a transitive application
of number of congruences:
∀ x . f x = g x

→
f (P id) = g (P id)

→ by congruence

reduce (f (P id)) = reduce (g (P id))
→𝑏𝑦𝐿𝑒𝑚𝑚𝑎 5.2

evalM (reduce (f (P id))) = evalM (reduce (g (P id)))
→ by def.

evalM (reduce (extract f)) = evalM (reduce (extract g))
→ by def.

decode f = decode g

□

The critical step, which is taken care of by the following
lemma, is necessary because we go from an equality on a
type where equality is quotiented, to a type where equality
is not quotiented.

Lemma 5.2. if x= y then evalM x= evalMy

Proof. We need to show that the terms which we deem equal
by quotienting the equality of FreeCartesian are mapped to
equal terms by evalM. This is done case by case, and a simple
matter of expanding definitions. We show two cases here:
the others follow the same patterns.
• evalM id = id = evalM (Embed Id)
• evalM (Embed𝜙 × Embed𝜓 ) = evalM (Embed𝜙) ×

evalM (Embed𝜓 ) = 𝜙 ×𝜓 = evalM (Embed (𝜙 ×𝜓 )
)

□
We can then prove all the laws given in Definition 3.1.

Theorem 5.3. The implementation respects the laws stated
in Definition 3.1.

Proof. Each case can be proven by equational reasoning. (In
these reduction steps we assume that the P r type forms a
cartesian category, obtained by lifting the same structure
from FreeCartesian. This simplification means that we can
skip many uninformative conversions between the two types
using P and fromP.)
• split/merge

split (merge (x, y))
= by def
split (x△ y)

= by def
(𝜋1 ◦ (x△ y), 𝜋2 ◦ (x△ y))

= by cartesian category properties
(x, y)

• merge/split
merge (split f)

= by def
(let (x, y) = ((𝜋1 ◦ f), (𝜋2 ◦ f)) in (x△ y))

= by evaluation
((𝜋1 ◦ f) △ (𝜋2 ◦ f))

= by cartestian laws
f

• decode/encode
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decode (encode f)
= by def
decode (_ (P x) →P (Embed f ◦ x))

= by def
evalM (reduce (extract (_ (P x) →

P (Embed f ◦ x))))
= by def
evalM (reduce ((_ x→ Embed f ◦ x) id))

= by 𝛽-reduction
evalM (reduce (Embed f ◦ id))

= by property of host language composition
evalM (reduce (Embed f))

= by evalM ◦ reduce ◦ Embed = id
f

• encode/decode
encode (decode f) (P a)

= by def of encode
P (Embed (decode f) ◦ a)

= by def of decode
P (Embed (evalM (reduce (fromP (f id)))) ◦ a)

= by Embed ◦ evalM ◦ reduce = id
f id ◦P a

= by Covariant Yoneda Lemma (naturality of f)
f (P a)

The step oneway to see that Embed ◦ evalM ◦ reduce= id
is to notice that reduce does not change the mean-
ing of morphisms, only their representation, from
free cartesian to free smc. The composition Embed ◦
evalM does the opposite conversion.We have equal-
ity because free smc terms are quotiented by Embed
being an homomorphism.

• encode/◦
encode (𝜙 ◦𝜓 ) (P f)

= by def
P (Embed (𝜙 ◦𝜓 ) ◦ f)

= by Embed property
P (Embed𝜙 ◦ Embed𝜓 ◦ f)

= by def of encode
encode𝜙 (P (Embed𝜓 ◦ f))

= by def of encode
encode𝜙 (encode𝜓 (P f))

= by def of ◦
(encode𝜙 ◦ encode𝜓 ) (P f)

• encode/id
encode id (P f)

= by definition of encode
P (Embed id ◦ f)

= by Embed property
id ◦P f

= by def
P f

= by def
id (P f)

• encode/merge
encode (𝜙 ×𝜓 ) (P a #P b)

= by def
P (Embed (𝜙 ×𝜓 ) ◦ (a△ b))

= by assumption on Embed
P ((Embed𝜙 × Embed𝜓 ) ◦ (a△ b))

= by properties of free cartesian categories
P ((Embed𝜙 ◦ a) △ (Embed𝜓 ◦ b))

= by def
(encode𝜙 (P a) # encode𝜓 (P b))

• encode/𝜌
encode 𝜌 (P a)

= by definition of encode
P (Embed 𝜌 ◦ a)

= by definition of unitor for cartesian categories
P ((id△ Y) ◦ a)

= by property of △
P (a△ (Y ◦ a))

= by property of Y
P (a△ Y)

= by definitoin of merge
(P a # unit)

• encode/𝜌’
encode 𝜌 (P a # unit)

= by def
P (Embed 𝜌 ◦ (a△ Y))

= by definition of unitor for cartesian categories
P (𝜋1 ◦ (a△ Y))

= by properties of cartesian categories
P a

• encode/𝜎
encode𝜎 (P a #P b)

= by def
P (Embed𝜎 ◦ (a△ b))

= by assumption on Embed
P (𝜎 ◦ (a△ b))

= by properties of free cartesian categories
P (b△ a)

= by def
(P b #P a)

• encode/𝛼
encode𝛼 ((P a #P b) #P c)

= by def
P (Embed𝛼 ◦ ((a△ b) △ c))

= by assumption on Embed
P (𝛼 ◦ ((a△ b) △ c))

= by properties of free cartesian categories
P (a△ (b△ c))

= by def
(P a # (P b #P c))

• encode/𝛼 ’
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encode𝛼 (P a # (P b #P c))
= by def

P (Embed𝛼 ◦ (a△ (b△ c)))
= by assumption on Embed

P (𝛼 ◦ (a△ (b△ c)))
= by properties of free cartesian categories

P ((a△ b) △ c)
= by def
((P a #P b) #P c)

□

5.2 Characterisation of the Domain of reduce.
As mentioned previously, the bulk of the work is to define
(and prove correct) the reduce function, which converts a
FreeCartesian representation into a FreeSMC. This reduce
function is partial: if its input is not suitable (say if an input is
discarded) then there is no smc representation. Fortunately,
we only need to deal with representations which have been
constructed using the port interface, namely linear functions
built with encode, merge, split and unit. Our plan is then to
1. prove that the extracted morphisms are indeed reducible
to the smc interface, and 2. show how to carry it out algorith-
mically. We start by addressing the first problem, and this
will put us firmly on track to address the second one.

Definition 5.4. A representation f : FreeCartesian k a b is
called linear if it is it defined using only the smc subset of
the cartesian structure.

Definition 5.5. A representation f : FreeCartesian k a b is
called protolinear iff it is equivalent, according to the laws
of a cartesian category, to a linear representation h.

Theorem 5.6. For every function h :∀ r . P k r a⊸ P k r b, the
morphism extract h is a protolinear representation.

Proof. The idea of the proof is to do an induction on the
structure of h. But in general a computational prefix f of
h has several outputs. That is, the type of f has the form
P k r a⊸

⊗
𝑖 (P k r t𝑖 ), where where the big circled product

operator is a multary version of the monoidal product with
right associativity. The components of such products repre-
sent ports which are available after the prefix f is run (but
h is not complete). Thus, to obtain a protolinear function
from f, its outputs must be merged, by a generalised fork (△)
function, written

a
, and defined as follows:

a
::
⊗

𝑖 (P k a t𝑖 ) →P k a (
⊗

𝑖 t𝑖 )a
(f1, (. . . , fn)) = (f1 △ (. . . △ fn))

When there is a single output port,
a

is the identity, and
thus this theorem is a corollary of the generalised form,
Lemma 5.7, for a product with one element. □

Lemma 5.7. If f :∀ r . P k r a⊸
⊗

𝑖 (P k r t𝑖 ), then
a
(f id) is

a protolinear representation.

Proof. First, we need to choose a convenient representation
of the function f itself. A first idea could be to use the term

representation of Haskell. This would however make for a
tedious proof, and to fit our theme, we use a categorical rep-
resentation for Haskell functions as well. For this purpose,
we make the simplifying assumption that functions of the
type ∀ r . P k r a⊸ P k r b can be themselves represented as
morphisms in another free smc, the category of linear func-
tions of Haskell.3 Additionally, because the type P k a b is
abstract, we know that the only possible generators for this
smc are the primitives unit, split,merge and encode: we can
assume that other constructions are reduced away by the
Haskell evaluator.

Furthermore, this representation can be assumed without
loss of generality to take the form of a composition s1 ◦ · · · ◦
sn. (This corresponds to cutting the corresponding diagram
in vertical slices si, each containing a single generator. By
topology-preserving transformations, it is always possible
to move generators so that they fall in separate slices.)
In fact, without loss of generality, we assume that each

slice s has either of the following forms: 1. encode𝜙 × id 2.
𝛼 ◦ (split× id) 3. (merge× id) ◦𝛼 4. _ x→ (unit, x). That is,
we assume that the generators act on the first component of
the slice. (The split and merge cases are composed with asso-
ciators to preserve the property that the multary monoidal
products on the input and output are right-associated.) We
can make this assumption because we treat permutations
over the monoidal product as separate slices (Of a separate
form, referred to as 5. below). Such a slice does not contain
any generator; rather its role is to stage the next variable(s)
to be acted upon by the next generator.
We can now proceed with the induction. The base case

reduces to protolinearity of id, which is obvious. For the
induction case, we assume that

a
(f id) is protolinear, and

show that so is
a
((s ◦ f) id), for every function f of type

∀ r . P k r a⊸
⊗

𝑖 (P k r t𝑖 ), and every possible slice s.
Let us calculate a reduced form for (s ◦ f) id for each case:

• Let g= encode𝜙 × id.

3To be fair, this property would only be true of an idealised language with
linear types (Section 2.4). For an actual programming language, exceptions,
non-termination, etc. should be taken into account. In practice, if the func-
tion of type ∀ r. P k r a⊸ P k r b diverges, the reduce function also diverges.
This means that we are limited to finite quantum circuits or workflows.
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a
(((encode𝜙 × id) ◦ f) id)

= by def of ◦a
((encode𝜙 × id) (f id))

= by expansion of pairsa
((encode𝜙 × id) (𝜋1 (f id), 𝜋2 (f id)))

= by definition of ×a
(encode𝜙 (𝜋1 (f id)), 𝜋2 (f id))

= by definition of mergeA
(encode𝜙 (𝜋1 (f id)) △ (

a
(𝜋2 (f id))))

= by def of encode
P (Embed𝜙 ◦ fromP (𝜋1 (f id))) △

a
(𝜋2 (f id))

= by property of ×/△
P (Embed𝜙 × id) ◦ (𝜋1 (f id) △

a
(𝜋2 (f id)))

= by definition of mergeA
P (Embed𝜙 × id) ◦

a
(𝜋1 (f id), 𝜋2 (f id))

= by contraction of pairs
P (Embed𝜙 × id) ◦

a
(f id)

• Let g=𝛼 ◦ (split× id)a
((𝛼 ◦ (split× id) ◦ f) id)

= by def of ◦a
(𝛼 ((split× id) (f id)))

= by pair expansiona
(𝛼 ((split× id) (𝜋1 (f id), 𝜋2 (f id))))

= by def of ×a
(𝛼 ((split (𝜋1 (f id)), 𝜋2 (f id))))

= by def of splita
(𝛼 ((𝜋1 ◦ (𝜋1 (f id)), 𝜋2 ◦ (𝜋1 (f id))),

𝜋2 (f id)))
= by def of assoca
(𝜋1 ◦ (𝜋1 (f id)), (𝜋2 ◦ (𝜋1 (f id)), 𝜋2 (f id)))

= by def of mergeA
(𝜋1 ◦ (𝜋1 (f id))) △

a
(𝜋2 ◦ (𝜋1 (f id)), 𝜋2 (f id))

= by def of mergeA
(𝜋1 ◦ (𝜋1 (f id))) △ ((𝜋2 ◦ (𝜋1 (f id))) △a

(𝜋2 (f id)))
= by def of assoc
𝛼 ◦ (((𝜋1 ◦ (𝜋1 (f id))) △ (𝜋2 ◦ (𝜋1 (f id)))) △a

(𝜋2 (f id)))
= by properties of cartesian categories
𝛼 ◦ (𝜋1 (f id) △

a
(𝜋2 (f id)))

= by def of mergeA
𝛼 ◦

a
(𝜋1 (f id), 𝜋2 (f id))

= by contraction of pair
𝛼 ◦

a
(f id)

• Let g= (merge× id) ◦𝛼 .

a
(((merge× id) ◦𝛼 ◦ f) id)

= by def of ◦a
((merge× id) (𝛼 (f id)))

= by expansion of pairs, def of assoc.a
((merge× id) ((𝜋1 (f id), 𝜋1 (𝜋2 (f id))),

𝜋2 (𝜋2 (f id))))
= by def of ×a
(merge (𝜋1 (f id), 𝜋1 (𝜋2 (f id))), 𝜋2 (𝜋2 (f id)))

= by def of mergea
((𝜋1 (f id) △ 𝜋1 (𝜋2 (f id))), 𝜋2 (𝜋2 (f id)))

= by def of mergeA
(𝜋1 (f id) △ 𝜋1 (𝜋2 (f id))) △

a
(𝜋2 (𝜋2 (f id)))

= by property of △/assoc
𝛼 ◦𝜋1 (f id) △ (𝜋1 (𝜋2 (f id)) △

a
(𝜋2 (𝜋2 (f id))))

= by def of mergeA
𝛼 ◦𝜋1 (f id) △

a
(𝜋2 (f id))

= by contraction of pairs
𝛼 ◦𝜋1 (f id) △

a
(𝜋1 (𝜋2 (f id)), 𝜋2 (𝜋2 (f id)))

= by def of mergeA
𝛼 ◦

a
(𝜋1 (f id), 𝜋2 (f id))

= by contraction of pairs
𝛼 ◦

a
(f id)

• Let g= _ x→ (unit, x).a
(((_ x→ (unit, x)) ◦ f) id)

= by def of ◦a
(((_ x→ (unit, x)) ◦ f) id)

= by def of unita
(P Y, f id)

= by def of mergeA
Y △

a
(f id)

= by property of Y
(Y △ id) ◦

a
(f id)

= by property of swap
𝜎 ◦ (id△ Y) ◦

a
(f id)

= by definition of unitor
𝜎 ◦ 𝜌 ◦

a
(f id)

• Let g=\ be a permutation.a
((\ ◦ f) id)

= by def of ◦a
(\ (f id))

=

\ ◦
a
(f id)

The last step is justified because \ is representable
in any symmetric monoidal category. Furthermore,
because

a
respects the structure of products, it does

not matter if \ is applied before or after
a
.

Recall that the induction hypothesis is that
a
(f id) is proto-

linear. This observation alone concludes the argument for
the split,merge and unit cases. For the other two cases, it suf-
fices to see that every permutation \ and every generator 𝜙
is linear, and we have protolinearity for the composition. □
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𝑓

𝑔

𝑓 =

𝑓

𝑓

𝑔 =

𝑓

𝑔 =
𝑓

𝑔

Figure 9. Undoing a split. Two copies of f have been iden-
tified. In the first step re-association is performed. Then, f
is commuted with 𝛿 . Finally duplication and projections are
simplified out.

5.3 An Algorithm for reduce
The proof of Theorem 5.6 gives a clear plan for how to imple-
ment reduce, namely reducing the form

a
(f id) by induction

until we obtain a morphism in smc form.
However, there are a couple of difficulties to overcome

before we actually have a usable algorithm. First, the proof
of Lemma 5.7 proceeds by case analysis on the form of the in-
put function (f : P k r a⊸

⊗
𝑖 (P k r t𝑖 )). But without metapro-

gramming this form is inaccessible to programs in Haskell:
we only have access to the FreeCartesian representation
which is produced by f id.

Regardless, inspection of the proof of Lemma 5.7 reveals
that the bulk of the work, namely undoing split operations,
can be done by finding two FreeSMCmorphisms of the form
𝜋1 ◦h and 𝜋2 ◦h in the operands of

a
, associate them to

(𝜋1 ◦ h) △ (𝜋2 ◦ h) and reduce them to h. If we had access to
the host language representation, we’d know where these
operands were. But we don’t: any permutation may be ap-
plied to the operands of

a
, and therefore an algorithm must

start by re-associating them so that 𝜋1 ◦ h and 𝜋2 ◦ h are con-
nected to the same fork (△). This step is illustrated in Fig. 9.
The process can then continue until all splits have been un-
done. A complete example involving several such steps is
depicted graphically in Fig. 10.
We remark first that the above procedure is terminating,

because every transformation reduces the size of the multary
merge, as in the proof of Lemma 5.7. The same lemma also
tells us that what remains after a reduction step is the com-
putational prefix of the morphism, which is itself protolinear
and thus subject to reduction by the same procedure.

Considering all possible re-associations of morphisms and
testing for equal prefixes is expensive. Therefore in our im-
plementation we maintain the arguments of

a
as a sorted

list of free cartesian morphisms, fs. This ordering is defined
lexicographically, considering the components of a compo-
sition in computational order (right to left in textual order).
Additionally, when comparing f ◦ g and f ′ ◦ g′, we ensure

𝜔
𝜙

𝜓
𝜙

𝜓
𝜙 =

𝜔𝜙

𝜓
𝜙

𝜓
𝜙 =
𝜔

𝜓

𝜙

𝜙

=

𝜔

𝜓

𝜙

=
𝜔

𝜓
𝜙

Figure 10. Example of reduction steps.

that neither g nor g′ are compositions themselves (otherwise
we re-associate compositions). This choice of morphism or-
dering has two consequences. First, if the morphisms 𝜋1 ◦ f
and 𝜋2 ◦ f are in the sorted list of arguments fs, they must be
adjacent to each other: so such a pair is easy to find. Second,
f and f ′ are compared only when g and g′ are equal, and this
is important in what follows.

One final question remains: how dowe arrange to compare
g and g′ if they are generators (say g=𝜙 and g′ =𝜓 )? Do
we need to assume a decidable ordering on them? Perhaps
surprisingly, the answer is no. Indeed, whenever we would
need to compare two generators in the reduction procedure,
it turns out that they are necessarily equal.

This property can be explained by the conjunction of the
following two facts. 1. we compare morphisms only if they
have the same source. That is, when we compare 𝜙 ◦ f and
𝜓 ◦ f ′, we consider the generators 𝜙 and 𝜓 only if we al-
ready know that f = f ′ (thanks to using the lexicographical
ordering described above). 2. two generators which have the
same source are necessarily equal. This second property is
grounded in linearity: the same intermediate result can never
be used more than once. Consequently if a generator 𝜙 is
fed an intermediate result x, this same x can never be fed to
a different generator𝜓 . (We can end up with two copies of
generators in the representation because split makes such
copies.)
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Because we assume that we have two encoded generators
𝜙 and𝜓 with the same source, the situation corresponds to
them being embedded in a single a morphism of the form

h ◦ ((𝜙 ◦ f) △ (𝜓 ◦ f) △ g).
We start by proving the wanted result, but make a couple of
additional assumptions which we discharge later.

Lemma 5.8. If h ◦ ((𝜙 ◦ f) △ (𝜓 ◦ f) △ g) is pseudolinear and
h discards neither the output of 𝜙 nor of𝜓 , then 𝜙 =𝜓 .

Proof. We have the following equivalence:
h ◦ ((𝜙 ◦ f) △ (𝜓 ◦ f) △ g) = h ◦ (((𝜙 ×𝜓 ) ◦𝛿 ◦ f) △ g) So the

morphism can be depicted as follows:

h

𝜙

𝜓
f

g

But, we also know that it is pseudo-linear, so it can be put in
smc form. In particular, this means that the 𝛿 node connect-
ing 𝜙 and𝜓 can be eliminated. There are only three ways to
reduce this node. We can either 1. assume 𝜙=𝜓 , and then we
can apply the rule (𝜙 ×𝜓 ) ◦𝛿 =𝛿 ◦𝜙 , and let further reduc-
tions take place; 2. prune away one of (or both) the branches;
or 3. assume that there is another copy of 𝜙 or𝜓 in g which
cause 𝛿 commutation and elimination.
If we can rule out Case 2 and Case 3, then Case 1. must

apply, and we have our result: 𝜙=𝜓 .
Case 2. corresponds to one of the branches being equiva-

lent to Y, because some discard occurs inside h. Let us assume
without loss of generality that the 𝜙 branch is the one equiv-
alent to Y. This situation is depicted below:

h
𝜙

𝜓
f

g

Indeed, the only way that this branch can be pruned is when
the output of 𝜙 is discarded. However, by assumption, we
have rejected this situation.

Case 3. can only happen when g is of the form (𝜙 △ i) ◦ f or
(𝜓 △ i) ◦ f. Let us assume the latter without loss of generality.
The situation is then:

h

𝜙

𝜓
f

𝜓

i
f

Which reduces to h ◦ ((𝜙 △ (𝛿 ◦𝜓 )) △ i) ◦ f But the only way
to reduce the 𝛿 node is if one of its branches is connected to
Y, as depicted below:

h
𝜙

𝜓

i

f

But this could happen only if one of the 𝜓 was discarded
to begin with, which is ruled out by assumption. So we can
again reject this case.

□

The next step in the argument is to prove that, if any
generator is in a decoded morphism, its output never (fully)
discarded. That is, the situation depicted in the following
diagram cannot occur:

𝜙

Formally:

Lemma 5.9. For every g, h, i if
a
(f id) =h ◦ ((i ◦𝜙) × id) ◦

g, and h is protolinear, then i cannot be equivalent to Y.

Proof. The proof is an immediate consequence of the pos-
sible ways to construct f— namely, the combinators of our
interface. The only way to discard fully a value is via Y, which
is itself available only via unit. However, 1. unit applies Y to
its input directly and 2. the only construction which places
something before another morphism is merge, which places
another 𝛿 before the whole construction. Consequently Y

can only be connected directly to the input of mergeA (f id),
never after a generator 𝜙 . □

To get the desired result, it suffices to put all the pieces
together.

Theorem 5.10. For every function f :P k r a⊸ P k r b, if
a

(f id) = h ◦ ((𝜙 ◦ f) △ (𝜓 ◦ f) △ g), then 𝜙 =𝜓 .

Proof. We apply Lemma 5.8. The pseudolinearity condition is
given by Theorem 5.6, and non-discardability by Lemma 5.9.

□
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5.4 Haskell Implementation of reduce
In this sectionwe present themain components of theHaskell
implementation of the reduce function. We start by show-
ing the underlying data structure which is manipulated by
reduce. This data structure is a list of morphisms of type
FreeCartesian k a xi, for varying xi. (This list corresponds to
the arguments of

a
.) Because we have to keep track in the

type that all these morphisms share the same source object,
we need to use a gadt to store them instead of a plain Haskell
list:

dataMerge k a xswhere
(:+) :: FreeCartesian k a x→Merge k a xs
→Merge k a (Cons x xs)

Nil ::Merge k aNull

The output of reduce is a morphism whose target object is
the monoidal product of the above xi. So we need to encode
the product of a list of types, as a type family:

type family Prod (xs :: [Type])where
ProdNull= ()
Prod (Cons x ys) = x ⊗ Prod ys

As explained above, lists of morphisms will be sorted ac-
cording to the lexicographical order on FreeCartesian k a.
To keep lists in sorted order, we will need a function to
merge them while preserving the order. Even though this
kind of function is entirely standard, our version must only
return the resulting merged list, but it must also keep track
of the permutations and re-associations which it applies. In-
deed, this permutation is necessary for the purpose of the
algorithm, because overall the meaning of the morphism
must remain the same: the composition of the sorted merge
operation and the permutations is the identity. Because we
do not know, from types only, the ordering of the resulting
list and hence its type, we must quantify existentially over
it. Because Haskell does not support native existential types,
we use a cps encoding to define the append function:

appendSorted ::Merge cat a xs→Merge cat a ys→
(∀ zs . FreeSMC cat (Prod zs)

(Prod xs ⊗ Prod ys) →
Merge cat a zs→ k) → k

appendSortedNil ys k= k (𝜎 ◦ 𝜌) ys
appendSorted xs Nil k= k 𝜌 xs
appendSorted (x :+ xs) (y :+ ys) k=
case compareMorphisms x y of
GT→ appendSorted (x :+ xs) ys $ _ a zs→

k (𝛼 ◦ (𝜎 × id) ◦𝛼 ◦ (id× a)) (y :+ zs)
_ → appendSorted xs (y :+ ys) $ _ a zs→

k ( 𝛼 ◦ (id× a)) (x :+ zs)
Like appendSorted, the rest of the functions must record
permutationswhich theymight apply, and thus arewritten in
the same style, with existentials encoded in cps. In fact, when
the input sorted list of morphisms is empty, the accumulated
permutation contains the result morphism in FreeSMC form.

The purpose of the next function is to expose forks (△) as
a sorted list of morphisms to merge (of type Merge). Addi-
tionally, it shifts embedded morphisms (and Y, which when
merged is a no-op) to the accumulated result.

expose ::Cat cat a b→
(∀ x . FreeSMC cat (Prod x) b→
Merge cat a x→ k) → k

expose (f1 :△: f2) k = expose f1 $ _ g1 fs1→
expose f2 $ _ g2 fs2→
appendSorted fs1 fs2 $ _ g fs→
k ((g1 × g2) ◦ g) fs

expose (Embed𝜙 :<: f) k= expose f $ _ g fs→
k (FreeSMC.Embed𝜙 ◦ g) fs

expose (E :<: _) k = k idNil
expose x k = k 𝜌 (x :+Nil)

To finish we show the code to undo a split. Even though it is
somewhat obscured by the necessary accumulation of result
morphisms, its purpose is simple: searching the sorted list for
a pair 𝜋1 ◦ f and 𝜋2 ◦ f and apply the appropriate reduction.

reduceStep ::Merge cat a xs→
(∀ zs . FreeSMC cat (Prod zs) (Prod xs) →
Merge cat a zs→ k) → k

reduceStep ((P1 :<: f1) :+ (P2 :<: f2) :+ rest) k
| EQ← compareMorphisms f1 f2 =
expose f1 $ _ g f ′→
appendSorted f ′ rest $ _ g′ rest′→
k (𝛼 ◦ (g× id) ◦ g′) rest′

reduceStep (f :+ rest) k=
reduceStep rest $ _ g rest′→
appendSorted (f :+Nil) rest′ $ _ g′ rest′′→
k ((𝜌 × g) ◦ g′) rest′′

6 Discussion and Related Work
6.1 Dynamically Checking for Linearity
Could we implement a variant of our api and implementa-
tion which performs linearity checks at runtime, rather than
relying on Haskell to perform them? This sounds reasonable:
after all we already construct a representation of decoded
morphisms, and we can run a protolinearity (Definition 5.5)
check on it. This could be done, but only if generators are
equipped with a decidable equality. Indeed, consider the
morphism (𝜋1 ◦𝜙) △ (𝜋2 ◦𝜓 ). It is protolinear if 𝜙=𝜓 , but
not otherwise. The tradeoff is simple to express: one either
needs static linearity checks or a dynamic equality check
on generators (but not both). However, if one would choose
dynamic equality checks, it may be more sensible to evaluate
to cartesian categories instead, as discussed in Section 6.2.

6.2 Evaluating to Cartesian Categories
Our technique can be adapted to cartesian structures (instead
of monoidal symmetric ones). To do so one shall 1. retain the
encoding of ports as morphisms from an abstract object r:
P k r a= FreeCartesian k r a, 2. relax the requirement to work
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with linear functions, and 3. drop the projection from free
cartesian to free monoidal structures in the implementation
of decode. We must however underline that such a technique
places 𝛿 at the earliest points in the morphisms, thus gen-
erators are duplicated every time their output is split. This
behaviour follows cartesian laws to the letter: indeed they
stipulate that such duplication has no effect: (f × f) ◦𝛿 =𝛿 ◦
f. However, categories which make both sides of the above
equation equivalent in all respects are rare. For example the
presence of effects tend to break the property. For example,
a Kleisli category is cartesian only if the embedded effects
are commutative and idempotent. In particular if one takes
runtime costs into account, the equivalence vanishes. Worse,
in the presence of other optimisations, one cannot tell a pri-
ori which side of the equation has the lowest cost: it may
be beneficial to have a single instance of f so that work is
not duplicated, but it may just as well be more beneficial to
have two instances, so that for example they can fuse with
whatever follows in the computation. Indeed if the output of
f is large, following it with 𝛿 may require storing (parts of) it,
whereas each copy of f may be followed by a function which
only require f to be ran lazily, not requiring any storage. In
general, programmers must decide for themselves if it is best
to place f before or after 𝛿 . Thus the smc approach, which
we follow, is to ask the programmer to place 𝛿 explicitly,
using copy from Section 3.4 We regard this approach to be
the most appropriate when there is a significant difference
between the left- and the right-hand side of the above equa-
tion. Another possibility would be to use a decidable check
over generators (as discussed in Section 6.1) and enforce that
all applications of a generator to the same input are realised
as a single generator in the resulting morphism. For example,
one can use identity in the source code (of the host language)
as generator equality. Then, each occurrence in the source
is mapped one-to-one with its occurrences in the represen-
tation as a (cartesian) morphism. This sort of source-code
identity is available when one has access to the represen-
tation of the source code (see Section 6.4), or by using any
approach to observable sharing (see Section 6.3).

6.3 Observable Sharing
One way to recover representations from embedded dsls
is to leverage observable sharing techniques. Gill [8] pro-
vides a review of the possible approaches, but in short, one
uses unique names equipped with testable equality for what
we call here generators. Explicit unique names can be pro-
vided directly by the programmer, or generated using a state
monad. Alternatively, testable equality can be implemented
by pointer equality. The version of Claessen and Sands [6] is
native, but it breaks referential transparency. The version of
4Indeed, duplications which we consider here are coming from user code,
and they are disjoint from those that we insert in the intermediate free carte-
sian representations discussed in Section 5. In fact, there is no interaction
between the two.

Peyton Jones et al. [18] preserves referential transparency,
but resides in the catch-all IO monad.

Turning the problem on its head, we can see our approach
as a principled solution to observable sharing. Essentially,
forcing the programmer to be explicit about duplication
means that no implicit sharing needs to be recovered, and
therefore edsl backends (such as those presented in Sec-
tion 4) need not deal with it.

6.4 Compiling to Categories
Elliott [7] advertises a compiler plugin which translates a
source code representation to a categorical representation.
This plugin is close in purpose to what we propose here.
The first obvious difference is that our solution is entirely
programmed within Haskell, while Elliott’s acts at the level
of the compiler. This makes our approach much less tied
to a particular implementation, and we even expect it to be
portable to other languages with linear types. In return, it
demands paying an extra cost at runtime.

There are more fundamental differences however: because
the input of the plugin is Haskell source code, it is forced
to target cartesian closed categories, even though most of
Elliott’s applications naturally reside at the simple cartesian
level (keeping in mind the caveat discussed in Section 6.2).
This forces one to provide cartesian closed instances for all
applications, or add a translation layer from cartesian closed
to just cartesian categories. Our approach avoids any of
those complications, but Valliappan and Russo [22] provide
a detailed study of the alternative.

In fact, the present work has much synergy with Elliott’s:
all his examples are supported by our technique, out of the
box, and we recommend consulting them for a broader view
of the applications of categorical approaches. Accordingly,
in Section 4 we have focused on the stones left unturned by
Elliott. In particular the applications to quantum gates is out
of reach when one targets cartesian closed categories.

6.5 A Practical Type Theory for smcs
Shulman [20] proposes a type theory for smcs. The motiva-
tion is different than ours: Shulman wants to provide set-like
reasoning on smc morphisms to mathematicians, whereas
we are providing a notation to describe smc morphisms in a
programming language. Shulman’s is a dedicated language
while ours is embedded in Haskell. The means are rather
different too: Shulman’s type theory doesn’t require giving a
meaning to ports (Shulman calls ports “terms”) instead the se-
mantic is given globally over an entire judgement. We give a
local semantics by giving a meaning to ports. This difference
follows from our implementing the port interface within
Haskell, rather than using metaprogramming, as described
in Section 6.4.
Nevertheless, the end product, as far as the user is con-

cerned, is pretty similar: one writes expressions on ports that



Conference’17, July 2017, Washington, DC, USA Jean-Philippe Bernardy and Arnaud Spiwack

one then needs to combine together to form a legal expres-
sion. This convergence suggests that there may be value in a
further investigation of the mathematical structure of ports.

6.6 Quantification over r
Another minor possible improvement in the api (Section 3)
would be to remove the variable r in the type P k r a. Such
locally quantified variables are used to ensure that two in-
stances of an edsl are not mixed together. For instance,
Launchbury and Peyton Jones [10] use them to capture the
identity of state threads. However, in our case, this role is
already fulfilled by the use of linear types. Indeed, if an ini-
tial value type P k r a is introduced by an instance of decode,
linearity checks already prevent it from occuring free in an-
other instance of decode. The same property holds for values
derived from it (using split, merge, etc.). We leave a proof of
this fact to future work. Besides, even though the implemen-
tation does not strictly need the variable r, our proof of its
correctness does, therefore we have not explored this route
further.

7 Conclusion
When defining an embedded domain specific language, there
is often a tension between making the syntax (api) conve-
nient for the user, and making the implementation simple.
In particular, how to compose objects is an important choice
in the design space. Using explicit names for intermediate
computations is often most convenient for the user, but can
be hard to support by the implementation. In this paper we
have shown a way to bridge the gap between the conve-
nience of lambda notation on the user-facing side with the
convenience of categorical combinators on the implementa-
tion side. The price to pay is linearity: the user must make
duplication and discarding of values explicit.
Indeed, our technique is grounded in the equivalence be-

tween symmetric monoidal categories and linear functions.
While this equivalence is well known, we have pushed the
state of the art by showing that linear functions can compute
their own representation in a symmetric monoidal category.
Our technique has several positive aspects: it is usable

in practice in a wide range of contexts; it is comprised of a
small interface and reasonably short implementation; and it
does not depend on any special-purpose compiler modifica-
tion, nor on metaprogramming. As such, in the context of
Haskell, it has the potential to displace the arrow notation
as a standard means to represent computations whose static
structure is accessible.
In general, we think that this paper provides suitable

means to work with commutative effects in functional lan-
guages. Commutative effects are numerous (environment,
supply of unique names, random number generation, etc.),

and proper support for them has been recognised as a chal-
lenge for a long time, for example by Peyton Jones [16, chal-
lenge 2, slide 38]. This paper provides evidence that smcs
constitute the right abstraction for commutative effects, and
that linear types are key to providing a convenient notation
for them.
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